Problem 84

The sides of a small rectangular box are measured to be $1.80 \pm 0.1 \mathrm{~cm}, 2.05 \pm 0.02 \mathrm{~cm}$, and $3.1 \pm 0.1 \mathrm{~cm}$ long. Calculate its volume and uncertainty in cubic centimeters.

Solution

Calculate the maximum volume by multiplying the upper bounds for length, width, and height.

$$
\text { Maximum Volume: } \quad(1.80+0.1 \mathrm{~cm})(2.05+0.02 \mathrm{~cm})(3.1+0.1 \mathrm{~cm}) \approx 13 \mathrm{~cm}^{3}
$$

Calculate the minimum volume by multiplying the lower bounds for length, width, and height.

$$
\text { Minimum Volume: } \quad(1.80-0.1 \mathrm{~cm})(2.05-0.02 \mathrm{~cm})(3.1-0.1 \mathrm{~cm}) \approx 10 \mathrm{~cm}^{3}
$$

The volume and uncertainty is therefore roughly

$$
\begin{gathered}
\left(\frac{13+10}{2} \pm \frac{13-10}{2}\right) \mathrm{cm}^{3} \\
(11 \pm 1.1) \mathrm{cm}^{3} .
\end{gathered}
$$

