Problem 84

The sides of a small rectangular box are measured to be 1.80 ± 0.1 cm, 2.05 ± 0.02 cm, and 3.1 ± 0.1 cm long. Calculate its volume and uncertainty in cubic centimeters.

Solution

Calculate the maximum volume by multiplying the upper bounds for length, width, and height.

Maximum Volume: $(1.80 + 0.1 \text{ cm})(2.05 + 0.02 \text{ cm})(3.1 + 0.1 \text{ cm}) \approx 13 \text{ cm}^3$

Calculate the minimum volume by multiplying the lower bounds for length, width, and height.

Minimum Volume: $(1.80 - 0.1 \text{ cm})(2.05 - 0.02 \text{ cm})(3.1 - 0.1 \text{ cm}) \approx 10 \text{ cm}^3$

The volume and uncertainty is therefore roughly

$$\left(\frac{13+10}{2} \pm \frac{13-10}{2}\right) \text{ cm}^{3}$$
$$(11 \pm 1.1) \text{ cm}^{3}.$$

www.stemjock.com